Hệ thức Vi-et hay công thức Vi-ét (Viet) thể hiện mối quan hệ giữa các nghiệm của phương trình đa thức trong trường số phức và các hệ số do nhà toán học Pháp tìm ra. Nhằm giúp các bạn học sinh lớp 9 có nhiều tài liệu học tập môn Toán orsini-gotha.com giới thiệu Bài tập hệ thức Vi-et và các ứng dụng.
Bạn đang xem: Bài tập hệ thức vi-ét có đáp án
Bài tập hệ thức Vi-et và các ứng dụng là tài liệu bổ ích, bao gồm 5 dạng bài tập cơ bản như: nhẩm nghiệm của phương trình bậc hai, lập phương trình bậc hai, tìm hai số biết tổng và tích của chúng, xét dấu các nghiệm của phương trình bậc hai và dạng toán về biểu thức liên hệ giữa các nghiệm của phương trình bậc hai. Ngoài ra các bạn tham khảo thêm tài liệu tổng hợp kiến thức và dạng bài tập toán 9, bài tập Hệ thức lượng trong tam giác vuông. Hy vọng với tài liệu này các bạn có thêm nhiều tư liệu tham khảo, củng cố kiến thức môn Toán để đạt được kết quả cao trong các bài kiểm tra, bài thi vào lớp 10 sắp tới. Chúc các bạn học tập tốt.
Bài tập hệ thức Vi-et và các ứng dụng
Dạng 1: Nhẩm nghiệm của phương trình bậc hai
1. Dạng đặc biệt: Phương trình bậc hai có một nghiệm là 1 hoặc -1 Vi du 1: Nhầm nghiệm của các phương trình sau:
a)

b)

1.2. Cho phương trình bậc hai, có một hệ số cho biết, cho truớc một nghiệm, tìm nghiệm còn lại và chỉ ra hệ số chura biết của phương trình:
Vi dụ 2:
a) Phương trình

b) Phương trình

c) Phương trình

d) Phương trình

Bài 1: Tìm nghiệm của phương trình
a) 5

b)

Bài 2: Xác định m và tìm nghiệm còn lại của phương trình
a)

b)

c)

2. Dạng 2: Lập phương trình bậc hai
2.1. Lập phương trình bậc hai biết hai nghiệm Vi dụ 1: Lập một phương trình bậc hai chứa hai nghiệm là 3 và 2
Ví dụ 2: Cho

Hãy lập phương trình bậc hai có nghiệm:

2.2. Lập phương trình bậc hai có hai nghiệm thoả mãn biểu thức chứa hai nghiệm của một phương trình cho trước.
Xem thêm: Chất Có Thể Dùng Làm Mềm Nước Cứng Tạm Thời Là M Mềm Nước Cứng Tạm Thời Là
Vi dụ 1: Cho phương trình


Vi dụ 2: Cho phương trình



Ví dụ 3: Tìm các hệ số p và q của phương trình:



* Bài tập áp dụng:
Bài 1: Lập phương trình bậc hai có các nghiệm là:
a) 8 và -3
b) 36 và -104
c)

d)


Bài 2: Cho phương trình



Bài 3: Cho phương trình



Bài 4: Lập phương trình bậc hai có các nghiệm bằng nghịch đảo các nghiệm của phương

Bài 5: Cho phương trình



Bài 6: Lập phương trình bậc hai có hai nghiệm


3. Dạng 3: Tìm hai số biết tổng và tích của chúng.
Ví du 1: Tìm hai số a và b biết S=a+b=-3, P=a b=-4
Ví dụ 2: Tìm hai số a và b biết S=a+b=3, P=a b=6
* Bài tập áp dụng:
1: Tìm hai số biết tổng S =9 và tích P=20
2. Tìm x, y biết
a) x+y=11 ; x y=28
b) x-y=5 ; x y=66
\underline{\text { Bài } 3:} Tìm hai số x, y biết: x^{2}+y^{2}=25 ; x y=12
4. Dạng 4: Dạng toán về biểu thức liên hệ giữa các nghiệm của phương trình bậc hai.