Đề soát sổ 1 tiết Hình học tập 8 chương 3 năm 2017-2018 có đáp án - Trường thcs Vĩnh Bình Bắc 4 2 0


Bạn đang xem: Đề kiểm tra chương 3 hình học 8 tự luận

Đề kiểm tra 1 huyết Hình học 8 chương 1 năm 2017-2018 gồm đáp án - Trường trung học cơ sở Hùng vương 5 3 0
Đề kiểm soát 1 tiết Hình học 12 chương 3 năm 2017 – 2018 trường Ông Ích Khiêm – Đà Nẵng 4 111 1


Xem thêm: Khí Amoniac Không Có Tính Chất Nào Sau Đây, Có Mùi Khai Và Xốc

Trường trung học cơ sở Gò Đen KIỂM TRA 45 PHÚT. Lớp : 8 /. . . Môn : TOÁN - HÌNH HỌC Họ và tên : . . . . . . . . . . . . . . . . . . . . . Ngày : . / 04/ 2009 ĐIỂM LỜI PHÊ CỦA GIÁO VIÊN ĐỀ 1 I. TRẮC NGHIỆM : Câu 1: nếu như ∆ABC ∆DEF theo tỉ số đồng dạng k, thì ∆DEF ∆ABC, theo tỉ số đồng dạng là : A. K B. 1 k C. 2k D. – k Câu 2: mang lại tam giác ABC : MN // BC thì : A. AM AN AB MN = B. MB na AB AC = C. AM AN MB NC = D. Cả cha đều đúng. Câu 3 : Tỉ số hai đường cao của 2 tam giác đồng dạng bằng : A. Tỉ số đồng dạng. B. Bình phương tỉ số đồng dạng. C. Nghòch hòn đảo của tỉ số đồng dạng. D. Hai lần tỉ số đồng dạng. Câu 4 : Tam giác ABC đồng dạng cùng với tam giác DEF khi : A. µ ¶ AB , DE BC B E EF = = B. AB DE BC AC EF DF = = C. µ ¶ µ ¶ , D B E A= = D. Cả hai các đúng II.BÀI TẬP: bài 1: ( 4 điểm ) đến tam giác ABC, mặt đường phân giác góc A giảm BC tại D. Hiểu được AB = 16 cm, AC = 24 cm, BD = 12 cm. A. Tính tỉ số của AC và AB ? b. Tính DC , BC. C. Cho DE // AB. Tính DE ? bài 2 : cho ∆ABC vuông trên A, kẻ mặt đường cao AH . Hiểu được AB = 12 cm, AC = 16cm, BC=20 cm. A. Chứng minh : ∆HAC ∆ABC . Tìm tỉ số đồng dạng k ? b. Chứng tỏ : AC 2 = HC.BC b. Tính diện tích s tam giác ∆HAC ? không còn 12 24 E 16 D B C A A B C M N ĐÁP ÁN I. TRẮC NGHIỆM : Câu 1 : B Câu 2:C Câu 3 : A Câu 4 : D II. TỰ LUẬN : bài 1 : ( 3, 5 điểm ) a. Tỉ số của AC cùng AB là : 24 3 16 2 AC AB = = ( 0,75 đ ) b. Ta gồm :AD là phân giác góc A ( 0,25) => AC DC AB DB = ( 0.5 đ ) => DC = 18 cm ( 0.5 đ) nhưng CB=DC + BD = 12+18 = 30 cm ( 0.5 đ ) c. Ta gồm DE // AB => DC DE BC AB = ( 0.5 đ ) => 18 30 16 DE = => 18 .16 30 DE = =9,6 ( cm) ( 0.5 đ) bài 2: ( 4,5 điểm ) a. Xét ∆HAC với ∆ABC, ta có : µ µ 0 90H A= = ( 0,5 đ ) µ C bình thường ( 0,5 đ ) => ∆HAC ∆ABC ( 0,5 đ ) => HA AC HC k AB BC AC = = = => 16 4 trăng tròn 5 k = = ( 0, 5 đ ) b. Do ∆HAC ∆ABC => AC HC BC AC = ( 0, 5 đ ) => AC 2 = HC.BC ( 0, 5 đ ) c. Ta tất cả : ∆HAC ∆ABC ( cmt ) => 2 HAC ABC S k S = ( 0, 5 đ ) => 16 25 HAC ABC S S = => 16 16 1 . . 25 25 2 HAC ABC S S AB AC= = => 16 1 . .16.12 25 2 HAC S = =61,44 ( centimet 2 ) ( 0, 5 đ ) 12 24 E 16 D B C A 16 đôi mươi 12 C H B A ( 0,5 đ ) Trường thcs Gò Đen KIỂM TRA 45 PHÚT. Lớp : 8 /. . . Môn : TOÁN - HÌNH HỌC Họ và tên : . . . . . . . . . . . . . . . . . . . . . Ngày : . . . / 04/ 2009 ĐIỂM LỜI PHÊ CỦA GIÁO VIÊN ĐỀ 2 I. TRẮC NGHIỆM : Câu 1 : Tỉ số hai tuyến phố cao của hai tam giác đồng dạng bằng : A. Tỉ số đồng dạng. B. Bình phương tỉ số đồng dạng. C. Nghòch đảo của tỉ số đồng dạng. D. Hai lần tỉ số đồng dạng. Câu 2 : Tam giác ABC đồng dạng với tam giác DEF lúc : A. µ ¶ AB , DE BC B E EF = = B. AB DE BC AC EF DF = = C. µ ¶ µ ¶ , D B E A= = D. Cả tía đều đúng Câu 3: nếu như ∆ABC ∆DEF theo tỉ số đồng dạng k, thì ∆DEF ∆ABC, theo tỉ số đồng dạng là : A. – k B. 1 k C. K D. 2k Câu 4: mang đến tam giác ABC : MN // BC thì : A. AM AN AB MN = B. AM AN MB NC = C. MB mãng cầu AB AC = D. Cả cha đều đúng. II. BÀI TẬP : bài bác 1: ( 4 điểm ) mang đến tam giác ABC, mặt đường phân giác góc A giảm BC trên D. Biết rằng AB = 15 cm, AC = 25 cm, BD = 12 cm. A. Tính tỉ số của AC và AB ? b. Tính DC , BC. C. Cho DE // AB. Tính DE ? bài bác 2 : mang đến ∆ABC vuông tại A, kẻ con đường cao AH . Biết rằng AB = 12 cm, AC = 16cm, BC=20 cm . A. Chứng tỏ : ∆HAB ∆ABC . Tra cứu tỉ số đồng dạng k ? b. Chứng tỏ : AB 2 = HB.BC b. Tính diện tích s tam giác ∆HAB ? không còn A B C M N 12 25 E 15 D B C A ĐÁP ÁN I. TRẮC NGHIỆM : Câu 1 : A Câu 2:D Câu 3 : C Câu 4 : B II. BÀI TẬP bài bác 1 : ( 3, 5 điểm ) c. Tỉ số của AC cùng AB là : 25 5 15 3 AC AB = = ( 0,75 đ ) d. Ta bao gồm :AD là phân giác góc A ( 0,25) => AC DC AB DB = ( 0.5 đ ) => DC = đôi mươi cm ( 0.5 đ) nhưng CB=DC + BD = 12+20 = 32 centimet ( 0.5 đ ) c. Ta có DE // AB => DC DE BC AB = ( 0.5 đ ) => trăng tròn 32 15 DE = => trăng tròn .15 32 DE = =9,375 ( cm) ( 0.5 đ) bài xích 2: ( 4,5 điểm ) a. Xét ∆HBA với ∆ABC, ta có : µ µ 0 90H A= = ( 0,5 đ ) µ B chung ( 0,5 đ ) => ∆HBA ∆ABC ( 0,5 đ ) => HB bố HA k AB BC AC = = = => 12 3 đôi mươi 5 k = = ( 0, 5 đ ) b. Vì chưng ∆HBA ∆ABC => AB HB BC AB = ( 0, 5 đ ) => AB 2 = HB.BC ( 0, 5 đ ) c. Ta có : ∆HBA ∆ABC ( cmt ) => 2 HBA ABC S k S = ( 0, 5 đ ) => 9 25 HBA ABC S S = => 9 9 1 . . 25 25 2 HBA ABC S S AB AC= = => 9 1 . .16.12 25 2 HAC S = =69,12 ( centimet 2 ) ( 0, 5 đ ) 12 25 E 15 D B C A 16 trăng tròn 12 C H B A ( 0,5 đ ) . => 16 25 HAC ABC S S = => 16 16 1 . . 25 25 2 HAC ABC S S AB AC= = => 16 1 . .16 .12 25 2 HAC S = = 61, 44 ( cm 2 ) ( 0, 5 đ ) 12 24 E 16 D B C A 16 . S S = => 9 9 1 . . 25 25 2 HBA ABC S S AB AC= = => 9 1 . .16 .12 25 2 HAC S = =69 ,12 ( centimet 2 ) ( 0, 5 đ ) 12 25 E 15 D B C A 16 20 12 C H B A ( 0,5