Cách viết phương trình mặt cầu trong không gian Oxyz là chủ đề quan trọng trong chương trình toán học 12. Trong nội dung bài viết dưới đây, hãy cùng orsini-gotha.com tìm hiểu về cách viết phương trình mặt cầu trong không gian cũng như các dạng bài tập về viết phương trình mặt cầu, cùng tìm hiểu nhé!.
Mục lục
1 Định nghĩa mặt cầu là gì? Lý thuyết phương trình mặt cầu2 Cách viết phương trình mặt cầu trong không gian Oxyz3 Các dạng bài tập về viết phương trình mặt cầuĐịnh nghĩa mặt cầu là gì? Lý thuyết phương trình mặt cầu
Khái niệm mặt cầu là gì?
Mặt cầu được định nghĩa khi với điểm O cố định cùng với một số thực dương R. Khi đó thì tập hợp tất cả những điểm M trong không gian cách O một khoảng R sẽ được gọi là mặt cầu tâm O và bán kính R. Ký hiệu: S(O;R)

Các dạng phương trình mặt cầu

Cách viết phương trình mặt cầu trong không gian Oxyz
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu I(a, b, c) bán kính R. Khi đó phương trình mặt cầu tâm I(a,b,c) bán kính R có dạng là: \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\)
Hoặc: \(x^{2}+y^{2}+z^{2}-2ax-2cz+d=0\) với \(a^{2}+b^{2}+c^{2}> d\)

Vị trí tương đối của mặt phẳng và mặt cầu
Cho mặt cầu (S): \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\) có tâm I, bán kính R và mặt phẳng (P): Ax+By+Cz+D=0
Ta có khoảng cách d từ mặt cầu (S) đến mặt phẳng (P):
d > R: mặt phẳng (P) và mặt cầu (S) không có điểm chung.Bạn đang xem: Phương trình mặt cầu
d = R: mặt phẳng (P) và mặt cầu (S) tiếp xúc tại H.d
Điểm H được gọi là tiếp điểm.
Mặt phẳng (P) được gọi là tiếp diện.
Vị trí tương đối giữa đường thẳng và mặt cầu

Cho mặt cầu (S): \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\) có tâm I, bán kính R và đường thẳng \(\Delta\)
Ta có khoảng cách d từ mặt cầu (S) đến đường thẳng \(\Delta\):
d > R: Đường thẳng \(\Delta\) không cắt mặt cầu (S)d = R: Đường thẳng \(\Delta\) tiếp xúc với mặt cầu (S)dCác dạng bài tập về viết phương trình mặt cầu
Dạng 1: Viết phương trình mặt cầu biết tâm và bán kính


Viết phương trình mặt cầu (S) có tâm \(I (x_{0}, y_{0}, z_{0})\) và bán kính R.
Thay tọa độ I và bán kính R vào phương trình, ta có:
(S): \((x – x_{0})^{2} + (y – y_{0})^{2} + (z – z_{0})^{2} = R^{2}\)
Ví dụ 2: Viết phương trình mặt cầu (S) có tâm I(3; -5; -2) và bán kính R = 5
Cách giải
Thay tọa độ của tâm I và bán kính R ta có phương trình mặt cầu (S):
\((x – 3)^{2} + (y – (-5))^{2} + (z – (-2))^{2} = 5^{2} \Leftrightarrow (x – 3)^{2} + (y + 5)^{2} + (z + 2)^{2} = 25\)

Dạng 2: Viết phương trình mặt cầu (S) có đường kính AB cho trước
Tìm trung điểm của AB. Vì AB là đường kính nên I là tâm trung điểm AB đồng thời là tâm của mặt cầu.Tính độ dài IA = R.Làm tiếp như bài toán dạng 1.Ví dụ 2: Lập phương trình mặt cầu (S) có đường kính AB với A(4; −3; 7) và B(2; 1; 3)
Cách giải
Gọi I là trung điểm của AB, thì mặt cầu (S) có tâm I và bán kính.
\(r = \frac{AB}{2} = IA = IB\)
Ta có: Vì I là trung điểm của AB nên I có tọa độ \(I(\frac{4+2}{2};\frac{-3+1}{2};\frac{7+3}{2}) \Rightarrow I(3; -1; 5)\)
\(\Rightarrow \vec{IA} = (1; -2; 2)\)
\(\Rightarrow R = \left | \vec{IA} \right | = \sqrt{1^{2} + (-2)^{2} + 2^{2}} = 3\)
Thay tọa độ của tâm I và bán kính R ta có phương trình mặt cầu (S):
\((x – 3)^{2} + (y – (-1))^{2} + (z – 5)^{2} = 3^{2} \Leftrightarrow (x – 3)^{2} + (y + 1)^{2} + (z – 5)^{2} = 9\)
Dạng 3: Viết mặt cầu (S) qua 3 điểm A, B, C và có tâm thuộc mặt phẳng (P) cho trước.
Xem thêm: De Thi Toán Lớp 6 Học Kì 2 Năm 2021 (Có Đáp Án), 20 Đề Thi Thử Học Kì 2 Môn Toán Lớp 6 Năm 2020
Gọi I (a, b, c) là tâm mặt cầu (S) thuộc mặt phẳng (P)Ta có hệ phương trình \(<\left\{\begin{matrix} IA = IB & \\ IA = IC & \\ I \epsilon (P) & \end{matrix}\right.\)Giải hệ phương trình tìm được a, b, c sau đó thay vào 1 trong 2 phương trình trên để tìm bán kính mặt cầu. Ví dụ 3: Viết phương trình mặt cầu (S) đi qua 3 điểm A (2;0;1), B (1;0;0), C (1;1;1) và có tâm thuộc mặt phẳng (P): x + y + z – 2 = 0.
Cách giải
Gọi phương trình tổng quát (S): \(x^{2} + y^{2} + z^{2} + 2ax + 2by + 2cz + d = 0\) với \(a^{2} + b^{2} + c^{2} > d\) (1)
Mặt cầu (S) có tâm \(I (-a;-b;-c)\)
Từ đó ta có hệ phương trình:
\(\left\{\begin{matrix} 4 + 1 + 4a + 2c + d = 0 & \\ 1 + 2c + d = 0 & \\ 3 + 2a + 2b + 2c + d = 0 & \\ -a -b -c -2 = 0 & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 4a + 2c + d = -5 & \\ 2c + d = -1 & \\ 2a + 2b + 2c + d = -3 & \\ a + b +b c = -2 & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a = -1 & \\ b = 0 & \\ c = -1 & \\ d = 1 & \end{matrix}\right.\)
Vậy mặt cầu (S) có phương trình: \(x^{2} + y^{2} + z^{2} + 1 = 0\)