\$sin^4x+cos^4x\$I should rewrite this expression into a new size to plot the function.

Bạn đang xem: Trigonometry

eginalign& = (sin^2x)(sin^2x) - (cos^2x)(cos^2x) \& = (sin^2x)^2 - (cos^2x)^2 \& = (sin^2x - cos^2x)(sin^2x + cos^2x) \& = (sin^2x - cos^2x)(1) longrightarrow,= sin^2x - cos^2xendalign

Is that true?  eginalignsin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\&=1^2-frac12(2sin xcos x)^2\&=1-frac12sin^2 (2x)\&=1-frac12left(frac1-cos 4x2 ight)\&=frac34+frac14cos 4xendalign Let \$\$displaystyle y=sin^4 x+cos^4 x = left(sin^2 x+cos^2 x ight)^2-2sin^2 xcdot cos^2 x = 1-frac12left(2sin xcdot cos x ight)^2\$\$

Now using \$\$ sin 2A = 2sin Acos A\$\$

So, we get \$\$displaystyle y=1-frac12sin^2 2x\$\$  Note that \$a^2 + b^2 = (a+b)^2 - 2ab\$

\$\$(sin^2 x)^2 + (cos^2 x)^2 = (sin^2 x + cos^2 x)^2 - 2sin^2 xcos^2 x =(sin^2 x + cos^2 x)^2 - 2(sin xcos x)^2 = \ 1 -frac sin^2 2x2\$\$

Note the following results:

\$\$ sin^2 x + cos^2 x = 1\$\$

\$\$ sin x cos x = fracsin 2x2\$\$

Expand in terms of complex exponentials.

\$\$sin^4 x + cos^4 x = left( frace^ix - e^-ix2i ight)^4 + left( frace^ix + e^-ix2 ight)^4\$\$

Notice that \$i^4 = +1\$, so we get

\$\$sin^4 x + cos^4 x = frac116 left( 2e^4ix + 2 e^-4ix + 12 ight)\$\$

where we use the relation \$(a+b)^4 = a^4 + 4 a^3 b + 6 a^2 b^2 + 4 ab^3 + b^4\$. The terms of the size \$a^3 b\$ và \$ab^3\$ all cancel by addition.

This leaves us with a final result:

\$\$sin^4 x + cos^4 x = frac416 left(frace^4ix + e^-4ix2 ight) + frac1216 = frac34 + frac14 cos 4x\$\$

share
Cite
Follow
answered Sep 30, 2015 at 17:14
MuphridMuphrid
\$endgroup\$
add a comment |
1
\$egingroup\$
If you want to lớn express in functions of higher frequencies like this \$\$sum_k=0^N sin(kx) + cos(kx)\$\$ Then you can use the Fourier transform together with convolution theorem. This will work out for any sum of powers of cos & sin, even \$sin^666(x)\$.

mô tả
Cite
Follow
answered Sep 30, năm ngoái at 17:09
\$endgroup\$
địa chỉ a comment |
0
\$egingroup\$
egineqnarraysin^4x + cos^ 4x &=& sin 4x + cos 4x+2 cos 2x sin 2x-2 cos 2x sin 2x \ &=& ( sin 2x + cos 2x)^2 -2 cos 2 sin 2 \ &=& 1-2 cos 2x sin 2x \&& (1-racine de 2 foi cos x sin x)(1+racine de 2 foi cos x sin x)endeqnarray

nội dung
Cite
Follow
edited Apr 16, 2017 at 20:14
Nosrati
answered Apr 16, 2017 at 19:14
\$endgroup\$
showroom a phản hồi |

Thanks for contributing an answer to orsini-gotha.comematics Stack Exchange!

Please be sure khổng lồ answer the question. Provide details và share your research!

But avoid

Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.

Use orsini-gotha.comJax to format equations. orsini-gotha.comJax reference.

To learn more, see our tips on writing great answers.

Draft saved

Submit

### Post as a guest

Name
thư điện tử Required, but never shown

### Post as a guest

Name
thư điện tử

Required, but never shown

## Not the answer you're looking for? Browse other questions tagged trigonometry or ask your own question.

8
Deriving an expression for \$cos^4 x + sin^4 x\$
0
Find \$int_0^2pi frac1sin^4x + cos^4x dx\$.

Xem thêm: Soạn Bài Quá Trình Tạo Lập Văn Bản Ngữ Văn Lớp 7 Ngắn Gọn, Soạn Bài Quá Trình Tạo Lập Văn Bản (Trang 45)

Related
1
Trigonometric Identities: \$fracsin^2 heta1+cos heta=1-cos heta\$
2
Simplifying second derivative using trigonometric identities
1
Simplify \$-2sin(x)cos(x)-2cos(x)\$
0
Simplify the expression & leave answer in terms of \$sin x\$ and/or \$cos x\$
0
How can we bound \$fracsin( heta)cos( heta)\$
1
Minimum value of \$cos^2 heta-6sin heta cos heta+3sin^2 heta+2\$
0
Transforming the equation \$cot x -cos x = 0\$ into the size \$cos x(1- sin x) = 0\$
1
Simplify: \$fracsin(3x-y)-sin(3y-x)cos(2x)+cos(2y) \$
3
Simplify trigonometric expression using trigonometric identities
Hot Network Questions more hot questions

Question feed
Question feed khổng lồ subscribe lớn this RSS feed, copy và paste this URL into your RSS reader.

orsini-gotha.comematics
Company
Stack Exchange Network
Site design / hình ảnh © 2022 Stack Exchange Inc; user contributions licensed under cc by-sa. Rev2022.4.1.41852

orsini-gotha.comematics Stack Exchange works best with JavaScript enabled 